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The chemistry of highly strained three-membered rings consist-
ing of heavier group 14 elements has attracted considerable
attention because of their unique structures.1 Following the
discovery of stable cyclotrimetallanes (R2M)3 (M ) Si,2 Ge,3 Sn4),
great progress has been made during the last two decades
concerning their synthesis, structural characterization and reactiv-
ity. There are only four examples for the mixed compounds,
consisting of two different heavier group 14 elements: digerma-
silirane synthesized by Baines,5 two disilagermiranes by Stalke6

and Watanabe,7 and distannagermirane prepared by Escudie´.8

Cyclotrimetallenes (R4M3) with endocyclic metal-metal double
bonds have been prepared quite recently: cyclotrigermenes were
synthesized in 1995 by our group,9 cyclotrisilenes were reported
by Kira10 and our group11 in 1999, and cyclotristannene was
prepared by Wiberg12 in 1999. Mixed cyclotrimetallenes, consist-
ing of two different group 14 elements, were still unknown,
although one can expect very interesting and unusual properties
of such molecules. Here we report the synthesis, full characteriza-
tion and molecular structure of the first mixed cyclotrimetallene,

1-disilagermirene3, as well as its photochemical and thermal
isomerization to a stable 2-disilagermirene4.

The reaction of 2,2,2-tribromo-1,1-di(tert-butyl)-1-methyl-
disilane1 and dichlorobis[di-tert-butyl(methyl)silyl]germane2
with excess sodium in toluene at room temperature produced a
dark-red reaction mixture, which contains tetrakis[di-tert-butyl-
(methyl)silyl]-1-disilagermirene3 as a major product (Scheme
1).13

1-Disilagermirene3 was isolated as hexagonal ruby crystals
by recrystallization from hexane. The 1-disilagermirene3 is a
very air- and moisture-sensitive compound and the red solution
of 3 immediately decolorized upon exposure to air.1H- and13C
NMR spectra correspond well to a symmetrical structure for3,
showing only two sets of signals for methyl- andtert-butyl groups,
whereas the29Si NMR spectrum revealed three resonances:
+18.7,+25.6, and+92.2 ppm, of which the first two belong to
the silyl-substituents, and the last one is characteristic of the
SidSi double bond.

The molecular structure of3 was determined by X-ray
crystallography (Figure 1).14 The three-membered ring represents
an almost isosceles triangle with bond angles of 52.71(3),
63.76(3), and 63.53(3)°. The silicon-silicon double bond length
of 3 is 2.146(1) Å, which is rather short compared with other
SidSi bond distances reported thus far (2.138-2.289 Å).1i,15 The
average bond length between germanium and the two silicon
atoms in the ring is 2.417(1) Å, which is intermediate between
the endocyclic Ge-Ge bond length of 2.522(4) Å in cyclo-
trigermene9 and the Si-Si bond length of 2.358(3) Å in
cyclotrisilene.11 The geometry around the SidSi double bond is
not planar buttrans-bent,16 as was determined by the sum of the
bond angles of the unsaturated silicon atoms (357.4° for Si1 and
356.9° for Si2), with a torsional angle Si3-Si1-Si2-Si4 of 37.0°
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(2). One of the possible reasons for such twisting of the SidSi
double bond may be the eclipsed conformation of the twotBu2-
MeSi substituents connected to the unsaturated silicon atoms.

Photolysis of the deuteriobenzene solution of3 with a high-
pressure Hg-lamp (λ > 300 nm) for 4 h caused a migration of
the silyl substituent with the formation of an endocyclic SidGe
double bond system (Scheme 2). The reaction proceeds quite
cleanly and the 2-disilagermirene4 was formed almost quanti-
tatively. This is the first example of a stable germasilene reported
to date.17

The 2-disilagermirene4 was isolated as scarlet plate crystals
from the hexane solution and appeared to be extremely thermally
stable with a melting point of 194-196 °C.18 1H- and13C NMR
spectra of4 are more complicated than those of3, because the
2-disilagermirene4 has lost theC2ν symmetry of the 1-disilager-

mirene 3. Thus, the1H NMR spectrum of4 showed three
resonances for three types of methyl groups and four resonances
for four non-equivalenttert-butyl groups, whereas the13C NMR
spectrum showed three sets of signals both for methyl andtert-
butyl groups. The29Si NMR spectrum showed five signals, of
which three belong to the silyl substituents,+39.5,+27.8, and
+6.9; the endocyclic double-bonded Si atom exhibits a downfield
resonance at+99.3, and the endocyclic saturated Si atom has an
upfield resonance at-120.1 ppm.

The molecular structure of4 was established by X-ray
crystallography, which revealed the triangle structure composed
of one saturated silicon atom, one unsaturated silicon and one
unsaturated germanium atoms. Unfortunately, accurate determi-
nation of bond lengths and angles in the three-membered ring
was impossible because of significant disorder in the positions
of double-bonded Si and Ge atoms. Nevertheless, it was possible
to determine the geometry around the SidGe double bond, which
also has thetrans-bent configuration with a torsion angle of
40.3(5)°.

The isomerization of3 to 4 can also be performed under
thermal conditions. Thus, thermolysis of the solution of3 in
mesitylene at 120°C in a sealed NMR tube cleanly produced
2-disilagermirene4 in 1 day. Thermal reaction of3 produced an
equilibrium mixture of3 (∼2%) and4 (∼98%), from which it is
roughly estimated that4 is more stable than3 by ∼3 kcal/mol.

Ab initio molecular orbital and density functional calculations
were carried out for the model H3Si-substituted 1-disilagermirene
5 and 2-disilagermirene6 at the MP2/DZd and B3LYP/DZd
levels.19 The SidSi double bond length in5 was calculated to be
2.105 (MP2) and 2.107 Å (B3LYP), which correspond well to
the experimental value of 2.146 Å, and the SidGe double bond
length in 6 was predicted to be 2.180 (MP2) and 2.178 Å
(B3LYP), which are closer to the SidSi than the GedGe double
bond length.20 It was also found that6 is more stable than5 by
3.9 (MP2) and 2.3 (B3LYP) kcal/mol. These values are in good
agreement with the experimentally estimated value of∼3 kcal/
mol.19 The geometries around the SidSi and SidGe double bonds
were calculated to be planar for5 and6, although they aretrans-
bent in3 and4 according to the X-ray data. However, introduction
of the real substituents led to atrans-bent configuration; the bend
angle was 18.5° at the HF/DZd level for 1-disilagermirene3.
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Figure 1. ORTEP drawing of3. Hydrogen atoms are omitted for the
clarity. Selected bond lengths (Å): Si(1)-Si(2) 2.146(1), Ge(1)-Si(1)
2.415(1), Ge(1)-Si(2) 2.420(1), Ge(1)-Si(5) 2.435(1), Ge(1)-Si(6)
2.432(1), Si(1)-Si(3) 2.361(1), Si(2)-Si(4) 2.367 (1). Selected bond
angles (deg): Ge(1)-Si(1)-Si(2) 63.76(3), Ge(1)-Si(2)-Si(1) 63.53(3),
Si(1)-Ge(1)-Si(2) 52.71(3), Si(5)-Ge(1)-Si(6) 123.33(3). Selected
torsion angle (deg): Si(3)-Si(1)-Si(2)-Si(4) 37.0(2).
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